Introduction to Turbomachinery
Turbomachinery devices are extensively used as a significant player in most industries such as Automotive, Datacenters Cooling, IT-Hardware, Aerospace and Defense, Energy, Oil and Gas, HVAC, Chemical Processing, and Healthcare.
Significant challenges for delivering the future rotating machines are improving performance and reliability in addition to decreasing the cost. A lot of effort is being made to increase operating range, improve thermal reliability, reduce carbon footprint/emission and minimize noise, vibration and cost as well. Efficiency enhancements can result in global improvements, particularly in the carbon footprint considering more and more stringent emissions standards while devices are being pushed to new operational boundaries. This long list of requirements turns turbomachinery design into a series of convoluted trade-offs which is quite sophisticated to optimize. As a result, most turbomachinery device companies leverage engineering simulation quite often to build in efficiency as they reduce emissions, time to market, and cost while maintaining higher standards of reliability. On top of that, the high cost of prototyping and test in turbomachinery applications makes simulation more favorable. Engineers can refine designs significantly before physical tests are performed, accelerating the process and reducing risk and cost
Simulating turbomachinery applications could be time-consuming due to its complicated and Multiphysics nature. Only Ansys, with its powerful portfolio and its custom-built convenient turbomachinery workflow, is up to the challenge. More and more companies have used Ansys successfully for various rotating machine applications.
